Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.590
Filtrar
1.
J Chem Inf Model ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598310

RESUMO

Previous experimental studies have shown that the isomerization reaction of previtamin D3 (PreD3) to vitamin D3 (VitD3) is accelerated 40-fold when it takes place within a ß-cyclodextrin dimer, in comparison to the reaction occurring in conventional isotropic solutions. In this study, we employ quantum mechanics-based molecular dynamics (MD) simulations and statistical multistructural variational transition state theory to unveil the origin of this acceleration. We find that the conformational landscape in the PreD3 isomerization is highly dependent on whether the system is encapsulated. In isotropic media, the triene moiety of the PreD3 exhibits a rich torsional flexibility. However, when encapsulated, such a flexibility is limited to a more confined conformational space. In both scenarios, our calculated rate constants are in close agreement with experimental results and allow us to identify the PreD3 flexibility restriction as the primary catalytic factor. These findings enhance our understanding of VitD3 isomerization and underscore the significance of MD and environmental factors in biochemical modeling.

2.
Redox Biol ; 72: 103129, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38574433

RESUMO

AIMS: Doxorubicin is a powerful chemotherapeutic agent for cancer, whose use is limited due to its potential cardiotoxicity. Semaglutide (SEMA), a novel analog of glucagon-like peptide-1 (GLP-1), has received widespread attention for the treatment of diabetes. However, increasing evidence has highlighted its potential therapeutic benefits on cardiac function. Therefore, the objective of this study was to examine the efficacy of semaglutide in ameliorating doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: Doxorubicin-induced cardiotoxicity is an established model to study cardiac function. Cardiac function was studied by transthoracic echocardiography and invasive hemodynamic monitoring. The results showed that semaglutide significantly ameliorated doxorubicin-induced cardiac dysfunction. RNA sequencing suggested that Bnip3 is the candidate gene that impaired the protective effect of semaglutide in doxorubicin-induced cardiotoxicity. To determine the role of BNIP3 on the effect of semaglutide in doxorubicin-induced cardiotoxicity, BNIP3 with adeno-associated virus serotype 9 (AAV9) expressing cardiac troponin T (cTnT) promoter was injected into tail vein of C57/BL6J mice to overexpress BNIP3, specifically in the heart. Overexpression of BNIP3 prevented the improvement in cardiac function caused by semaglutide. In vitro experiments showed that semaglutide, via PI3K/AKT pathway, reduced BNIP3 expression in the mitochondria, improving mitochondrial function. CONCLUSION: Semaglutide ameliorates doxorubicin-induced mitochondrial and cardiac dysfunction via PI3K/AKT pathway, by reducing BNIP3 expression in mitochondria. The improvement in mitochondrial function reduces doxorubicin-mediated cardiac injury and improves cardiac function. Therefore, semaglutide is a potential therapy to reduce doxorubicin-induced acute cardiotoxicity.

3.
Appl Spectrosc ; : 37028241246545, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629426

RESUMO

Laser-induced breakdown spectroscopy (LIBS) imaging has now a well-established position in the subject of spectral imaging, leveraging multi-element detection capabilities and fast acquisition rates to support applications both at academic and technological levels. In current applications, the standard processing pipeline to explore LIBS imaging data sets revolves around identifying an element that is suspected to exist within the sample and generating maps based on its characteristic emission lines. Such an approach requires some previous expert knowledge both on the technique and on the sample side, which hinders a wider and more transparent accessibility of the LIBS imaging technique by non-specialists. To address this issue, techniques based on visual analysis or peak finding algorithms are applied on the average or maximum spectrum, and may be employed for automatically identifying relevant spectral regions. Yet, maps containing relevant information may often be discarded due to low signal-to-noise ratios or interference with other elements. In this context, this work presents an agnostic processing pipeline based on a spatial information ratio metric that is computed in the Fourier space for each wavelength and that allows for the identification of relevant spectral ranges in LIBS. The results suggest a more robust and streamlined approach to feature extraction in LIBS imaging compared with traditional inspection of the spectra, which can introduce novel opportunities not only for spectral data analysis but also in the field of data compression.

4.
Magn Reson Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623934

RESUMO

PURPOSE: We propose a quantitative framework for motion-corrected T2 fetal brain measurements in vivo and validate the single-shot fast spin echo (SS-FSE) sequence to perform these measurements. METHODS: Stacks of two-dimensional SS-FSE slices are acquired with different echo times (TE) and motion-corrected with slice-to-volume reconstruction (SVR). The quantitative T2 maps are obtained by a fit to a dictionary of simulated signals. The sequence is selected using simulated experiments on a numerical phantom and validated on a physical phantom scanned on a 1.5T system. In vivo quantitative T2 maps are obtained for five fetuses with gestational ages (GA) 21-35 weeks on the same 1.5T system. RESULTS: The simulated experiments suggested that a TE of 400 ms combined with the clinically utilized TEs of 80 and 180 ms were most suitable for T2 measurements in the fetal brain. The validation on the physical phantom confirmed that the SS-FSE T2 measurements match the gold standard multi-echo spin echo measurements. We measured average T2s of around 200 and 280 ms in the fetal brain grey and white matter, respectively. This was slightly higher than fetal T2* and the neonatal T2 obtained from previous studies. CONCLUSION: The motion-corrected SS-FSE acquisitions with varying TEs offer a promising practical framework for quantitative T2 measurements of the moving fetus.

6.
Cardiovasc Diabetol ; 23(1): 116, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566123

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ferroptose , Humanos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Sirtuína 1 , Fibronectinas , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteína Supressora de Tumor p53 , Miócitos Cardíacos
7.
Sci Rep ; 14(1): 7985, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575700

RESUMO

At many dormant volcanoes, magmatic gases are not channeled through preferential degassing routes as fumaroles and only percolate through the flanks of the volcano in a diffuse way. This type of volcanic gas emission provides valuable information, even though the soil matrix contains an important atmospheric component. This study aimed to demonstrate that chemical ratios such as He/CO2 in soil gases provide excellent information on the evolution of volcanic unrest episodes and help forecast the volcanic eruption onset. Before and during the occurrence of the October 2011-March 2012 submarine of El Hierro, Canary Islands, more than 8500 soil He analyses and diffuse CO2 emission measurements were performed. The results show that the soil He/CO2 emission ratio began increasing drastically one month before eruption onset, reaching the maximum value 10 days before. During the eruptive period, this ratio also showed a maximum value several days before the period with the highest magma emission rate. The He/CO2 ratio was also helpful in forecasting the eruption onset. We demonstrate that this tool can be applied in real-time during volcanic emergencies. Our results also encourage a reevaluation of the global He emission from the subaerial volcanism.

8.
Enzyme Microb Technol ; 178: 110444, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581869

RESUMO

Glucuronoyl esterases (CE15, EC 3.1.1.117) catalyze the hydrolysis of ester bonds between lignin and carbohydrates in lignocellulose. They are widespread within fungi and bacteria, and are subjects to research interest due to their potential applicability in lignocellulose processing. Identifying new and relevant glucuronoyl esterase candidates is challenging because available model substrates poorly represent the natural substrate, which leads to inefficient screening for the activity. In this study, we demonstrate how fifteen novel, fungal, putative glucuronoyl esterases from family CE15 were expressed and screened for activity towards a commercially available, colorimetric assay based on the methyl-ester of 4-O-methyl-aldotriuronic acid linked to para-nitrophenol (methyl ester-UX-ß-pNP) and coupled with the activity of GH67 (α-glucuronidase) and GH43 (ß-xylosidase) activity. The assay provides easy means for accurately establishing activity and determining specific activity of glucuronoyl esterases. Out of the fifteen expressed CE15 proteins, seven are active and were purified to determine their specific activity. The seven active enzymes originate from Auricularia subglabra (3 proteins), Ganoderma sinensis (2 proteins) and Neocallimastix californiae (2 proteins). Among the CE15 proteins not active towards the screening substrate (methyl ester-UX-ß-pNP) were proteins originating from Schizophyllum commune, Podospora anserina, Trametes versicolor, and Coprinopsis cinerea. It is unexpected that CE15 proteins from such canonical lignocellulose degraders do not have the anticipated activity, and these observations call for deeper investigations.

9.
Angew Chem Int Ed Engl ; 63(19): e202318127, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38570814

RESUMO

The deployment of small-molecule fluorescent agents plays an ever-growing role in medicine and drug development. Herein, we complement the portfolio of powerful fluorophores, reporting the serendipitous discovery and development of a novel class with an imidazo[1,2-a]pyridinium triflate core, which we term PyrAtes. These fluorophores are synthesized in a single step from readily available materials (>60 examples) and display Stokes shifts as large as 240 nm, while also reaching NIR-I emissions at λmax as long as 720 nm. Computational studies allow the development of a platform for the prediction of λmax and λEm. Furthermore, we demonstrate the compatibility of these novel fluorophores with live cell imaging in HEK293 cells, suggesting PyrAtes as potent intracellular markers.


Assuntos
Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HEK293 , Microscopia de Fluorescência , Sais/química , Estrutura Molecular
11.
Artigo em Inglês | MEDLINE | ID: mdl-38639143

RESUMO

BACKGROUND: The clinical efficacy and safety of alcohol septal ablation (ASA) for obstructive hypertrophic cardiomyopathy (HCM) have been well-established; however, less is known about outcomes in patients undergoing preemptive ASA before transcatheter mitral valve replacement (TMVR). AIMS: The goal of this study is to characterize the procedural characteristics and examine the clinical outcomes of ASA in both HCM and pre-TMVR. METHODS: This retrospective study compared procedural characteristics and outcomes in patient who underwent ASA for HCM and TMVR. RESULTS: In total, 137 patients were included, 86 in the HCM group and 51 in the TMVR group. The intraventricular septal thickness (mean 1.8 vs. 1.2 cm; p < 0.0001) and the pre-ASA LVOT gradient (73.6 vs. 33.8 mmHg; p ≤ 0.001) were higher in the HCM group vs the TMVR group. The mean volume of ethanol injected was higher (mean 2.4 vs. 1.7 cc; p < 0.0001). The average neo-left ventricular outflow tract area increased significantly after ASA in the patients undergoing TMVR (99.2 ± 83.37 mm2 vs. 196.5 ± 114.55 mm2; p = <0.0001). The HCM group had a greater reduction in the LVOT gradient after ASA vs the TMVR group (49.3 vs. 18 mmHg; p = 0.0040). The primary composite endpoint was higher in the TMVR group versus the HCM group (50.9% vs. 25.6%; p = 0.0404) and had a higher incidence of new permanent pacemaker (PPM) (25.5% vs. 18.6%; p = 0.3402). The TMVR group had a higher rate of all-cause mortality (9.8% vs. 1.2%; p = 0.0268). CONCLUSIONS: Preemptive ASA before TMVR was performed in patients with higher degree of clinical comorbidities, and correspondingly is associated with worse short-term clinical outcomes in comparison to ASA for HCM patients. ASA before TMVR enabled percutaneous mitral interventions in a small but significant minority of patients that would have otherwise been excluded. The degree of LVOT and neoLVOT area increase is significant and predictable.

13.
Sci Rep ; 14(1): 9123, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643168

RESUMO

Multimodal spectral imaging offers a unique approach to the enhancement of the analytical capabilities of standalone spectroscopy techniques by combining information gathered from distinct sources. In this manuscript, we explore such opportunities by focusing on two well-known spectral imaging techniques, namely laser-induced breakdown spectroscopy, and hyperspectral imaging, and explore the opportunities of collaborative sensing for a case study involving mineral identification. In specific, the work builds upon two distinct approaches: a traditional sensor fusion, where we strive to increase the information gathered by including information from the two modalities; and a knowledge distillation approach, where the Laser Induced Breakdown spectroscopy is used as an autonomous supervisor for hyperspectral imaging. Our results show the potential of both approaches in enhancing the performance over a single modality sensing system, highlighting, in particular, the advantages of the knowledge distillation framework in maximizing the potential benefits of using multiple techniques to build more interpretable models and paving for industrial applications.

14.
Mar Pollut Bull ; 202: 116352, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604080

RESUMO

Artificial light at night (ALAN) is becoming a widespread stressor in coastal ecosystems, affecting species that rely on natural day/night cycles. Yet, studies examining ALAN effects remain limited, particularly in the case of sessile species. This study assessed the effects of ALAN upon the feeding activity and two molecular indicators in the widespread plumose sea anemone Metridium senile. Anemones were exposed to either natural day/night or ALAN conditions to monitor feeding activity, and tissue samples were collected to quantify proteins and superoxide dismutase (SOD) enzyme concentrations. In day/night conditions, sea anemones showed a circadian rhythm of activity in which feeding occurs primarily at night. This rhythm was altered by ALAN, which turned it into a reduced and more uniform pattern of feeding. Consistently, proteins and SOD concentrations were significantly lower in anemones exposed to ALAN, suggesting that ALAN can be harmful to sea anemones and potentially other marine sessile species.

15.
Appl Microbiol Biotechnol ; 108(1): 310, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662130

RESUMO

Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.


Assuntos
Halomonas , Hidroxibutiratos , Nitrogênio , Poliésteres , Poli-Hidroxibutiratos , Halomonas/metabolismo , Halomonas/genética , Halomonas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Redes e Vias Metabólicas/genética , Biomassa , Glucose/metabolismo
16.
Nat Microbiol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649410

RESUMO

RNA viruses, like SARS-CoV-2, depend on their RNA-dependent RNA polymerases (RdRp) for replication, which is error prone. Monitoring replication errors is crucial for understanding the virus's evolution. Current methods lack the precision to detect rare de novo RNA mutations, particularly in low-input samples such as those from patients. Here we introduce a targeted accurate RNA consensus sequencing method (tARC-seq) to accurately determine the mutation frequency and types in SARS-CoV-2, both in cell culture and clinical samples. Our findings show an average of 2.68 × 10-5 de novo errors per cycle with a C > T bias that cannot be solely attributed to APOBEC editing. We identified hotspots and cold spots throughout the genome, correlating with high or low GC content, and pinpointed transcription regulatory sites as regions more susceptible to errors. tARC-seq captured template switching events including insertions, deletions and complex mutations. These insights shed light on the genetic diversity generation and evolutionary dynamics of SARS-CoV-2.

17.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585848

RESUMO

RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. SERBP1 is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. Using a proteomics approach followed by functional analysis, we defined SERBP1's interactome. We uncovered novel SERBP1 roles in splicing, cell division, and ribosomal biogenesis and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's disease brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

19.
Biology (Basel) ; 13(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534426

RESUMO

The basolateral amygdala (BLA) contains interneurons that express neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), both of which are involved in the regulation of functions and behaviors that undergo deterioration with aging. There is considerable evidence that, in some brain areas, the expression of NPY and VIP might be modulated by acetylcholine. Importantly, the BLA is one of the brain regions that has one of the densest cholinergic innervations, which arise mainly from the basal forebrain cholinergic neurons. These cholinergic neurons depend on nerve growth factor (NGF) for their survival, connectivity, and function. Thus, in this study, we sought to determine if aging alters the densities of NPY- and VIP-positive neurons and cholinergic varicosities in the BLA and, in the affirmative, if those changes might rely on insufficient trophic support provided by NGF. The number of NPY-positive neurons was significantly reduced in aged rats, whereas the number of VIP-immunoreactive neurons was unaltered. The decreased NPY expression was fully reversed by the infusion of NGF in the lateral ventricle. The density of cholinergic varicosities was similar in adult and old rats. On the other hand, the density of cholinergic varicosities is significantly higher in old rats treated with NGF than in adult and old rats. Our results indicate a dissimilar resistance of different populations of BLA interneurons to aging. Furthermore, the present data also show that the BLA cholinergic innervation is particularly resistant to aging effects. Finally, our results also show that the reduced NPY expression in the BLA of aged rats can be related to changes in the NGF neurotrophic support.

20.
J Mol Med (Berl) ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554151

RESUMO

Rare recessive variants in the human VRK1 gene are associated with several motor neuron diseases (MND), such as amyotrophic lateral sclerosis, spinal muscular atrophy, or distal hereditary motor neuropathies (dHMN). A case with dHMN carrying two novel VRK1 gene variants, expressing Leu200Pro (L200P) and Arg387His (R387H) variant proteins, identified that these protein variants are functionally different. The Leu200Pro variant shares with several variants in the catalytic domain the loss of the kinase activity on different substrates, such as histones, p53, or coilin. However, the distal Arg387His variant and the distal Trp375* (W375X) chinese variant, both located at the end of the low complexity C-terminal region and proximal to the termination codon, retain their catalytic activity on some substrates, and mechanistically their functional impairment is different. The L200P variant, as well as most VRK1 pathogenic variants, impairs the phosphorylation of BAF and histone H4K16 acetylation, which are required for DNA attachment to the nuclear envelope and chromatin accessibility to DNA repair mechanisms, respectively. The R387H variant impairs phosphorylation of H2AX, an early step in different types of DNA damage responses. The functional variability of VRK1 protein variants and their different combinations are a likely contributor to the clinical phenotypic heterogeneity of motor neuron and neurological diseases associated with rare VRK1 pathogenic variants. KEY MESSAGES: VRK1 variants implicated in motor neuron diseases are functionally different. The L200P variant is kinase inactive, and the R387H variant is partially active. VRK1 variants alter H4K16 acetylation and loss of coilin and BAF phosphorylation. VRK1 variants alter Cajal bodies and DNA damage responses. VRK1 variant combination determines the neurological phenotype heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...